Magnetite Nanoparticles and Spheres for Chemo- and Photothermal Therapy of Hepatocellular Carcinoma in vitro

Int J Nanomedicine. 2020 Oct 14:15:7923-7936. doi: 10.2147/IJN.S257142. eCollection 2020.

Abstract

Introduction: We present a multimodal nanoplatforms for the treatment of hepatocellular carcinoma (HCC) in vitro. The nanoplatforms are based on polydopamine (PDA)-coated magnetite nanoparticles (NPs) and spheres (sMAG) with PAMAM dendrimers and functionalized with NHS-PEG-Mal (N-hydroxysuccinimide-polyethylene glycol-maleimide) linker, which allows their functionalization with a folic acid derivative. The nanomaterials bearing a folic acid-targeting moiety show high efficiency in killing cancer cells in the dual chemo- and photothermal therapy (CT-PTT) of the liver cancer cells in comparison to modalities performed separately.

Materials and methods: All materials are characterized in detail with transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, zeta potential and magnetic measurements. Also, photothermal properties were determined under irradiation of nanoparticles with laser beam of 2 W/cm2. The nontoxicity of nanoparticles with doxorubicin and without was checked by WST and LIVE/DEAD assay. Those tests were also used to evaluate materials bearing folic acid and anticancer drug in combined chemo- and photothermal therapy of HCC. Further, the generation of reactive oxygen species profile was also evaluated using flow cytometry test.

Results: Both NPs and sMAG showed high photothermal properties. Nevertheless, the higher photothermal response was found for magnetic spheres. Materials of concentration above 10 µg/mL reveal that their activity was comparable to free doxorubicin. It is worth highlighting that a functionalized magnetic sphere with DOXO more strongly affected the HepG2 cells than smaller functionalized nanoparticles with DOXO in the performed chemotherapy. This can be attributed to the larger size of particles and a different method of drug distribution. In the further stage, both materials were assessed in combined chemo- and photothermal therapy (CT-PTT) which revealed that magnetic spheres were also more effective in this modality than smaller nanoparticles.

Conclusion: Here, we present two types of nanomaterials (nanoparticles and spheres) based on polydopamine and PAMAM dendrimers g.5.0 functionalized with NHS-PEG-Mal linker terminated with folic acid for in vitro hepatocellular carcinoma treatment. The obtained materials can serve as efficient agents for dual chemo- and photothermal therapy of HCC. We also proved that PDA-coated magnetic spheres were more efficient in therapies based on near-infrared irradiation because determined cell viabilities for those materials are lower than for the same concentrations of nanomaterials based on small magnetic nanoparticles.

Keywords: drug delivery; liver cancer; magnetic nanoparticles; polydopamine.

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / therapeutic use
  • Carcinoma, Hepatocellular / drug therapy
  • Carcinoma, Hepatocellular / therapy*
  • Cell Line, Tumor
  • Combined Modality Therapy
  • Dendrimers / chemistry
  • Doxorubicin / chemistry
  • Doxorubicin / pharmacology
  • Doxorubicin / therapeutic use
  • Drug Carriers / chemistry*
  • Drug Liberation
  • Humans
  • Indoles / chemistry
  • Liver Neoplasms / drug therapy
  • Liver Neoplasms / therapy*
  • Magnetite Nanoparticles / chemistry*
  • Phototherapy*
  • Polyethylene Glycols / chemistry
  • Polymers / chemistry

Substances

  • Antineoplastic Agents
  • Dendrimers
  • Drug Carriers
  • Indoles
  • Magnetite Nanoparticles
  • PAMAM Starburst
  • Polymers
  • polydopamine
  • Polyethylene Glycols
  • Doxorubicin