Enhancing the sensitivity of plasmonic optical fiber sensors by analyzing the distribution of the optical modes intensity

Opt Express. 2020 Sep 28;28(20):28740-28749. doi: 10.1364/OE.399856.

Abstract

Improving the sensitivity of plasmonic optical fiber sensors constitutes a major challenge as it could significantly enhance their sensing capabilities for the label-free detection of biomolecular interactions or chemical compounds. While many efforts focus on developing more sensitive structures, we present here how the sensitivity of a sensor can be significantly enhanced by improving the light analysis. Contrary to the common approach where the global intensity of the light coming from the core is averaged, our approach is based on the full analysis of the retro-reflected intensity distribution that evolves with the refractive index of the medium being analyzed. Thanks to this original and simple approach, the refractive index sensitivity of a plasmonic optical fiber sensor used in reflection mode was enhanced by a factor of 25 compared to the standard method. The reported approach opens exciting perspectives for improving the remote detection as well as for developing new sensing strategies.