Printed Graphene Layer as a Base for Cell Electrostimulation-Preliminary Results

Int J Mol Sci. 2020 Oct 23;21(21):7865. doi: 10.3390/ijms21217865.

Abstract

Nerve regeneration through cell electrostimulation will become a key finding in regenerative medicine. The procedure will provide a wide range of applications, especially in body reconstruction, artificial organs or nerve prostheses. Other than in the case of the conventional polystyrene substrates, the application of the current flow in the cell substrate stimulates the cell growth and mobility, supports the synaptogenesis, and increases the average length of neuron nerve fibres. The indirect electrical cell stimulation requires a non-toxic, highly electrically conductive substrate material enabling a precise and effective cell electrostimulation. The process can be successfully performed with the use of the graphene nanoplatelets (GNPs)-the structures of high conductivity and biocompatible with mammalian NE-4C neural stem cells used in the study. One of the complications with the production of inks using GNPs is their agglomeration, which significantly hampers the quality of the produced coatings. Therefore, the selection of the proper amount of the surfactant is paramount to achieve a high-quality substrate. The article presents the results of the research into the material manufacturing used in the cell electrostimulation. The outcomes allow for the establishment of the proper amount of the surfactant to achieve both high conductivity and quality of the coating, which could be used not only in electronics, but also-due to its biocompatibility-fruitfully applied to the cell electrostimulation.

Keywords: cell electrostimulation; graphene nanoplatelets; surfactants; tissue engineering.

MeSH terms

  • Animals
  • Cell Line
  • Cell Movement
  • Cell Proliferation
  • Electric Stimulation
  • Graphite / chemistry*
  • Mice
  • Nanostructures
  • Neural Stem Cells / cytology*
  • Regenerative Medicine
  • Tissue Engineering
  • Tissue Scaffolds / chemistry*

Substances

  • Graphite