The role of vaspin in porcine corpus luteum

J Endocrinol. 2020 Dec;247(3):283-294. doi: 10.1530/JOE-20-0332.

Abstract

Vaspin, visceral adipose tissue-derived serine protease inhibitor, plays important roles in inflammation, obesity, and glucose metabolism. Our recent research has shown the expression and role of vaspin in the function of ovarian follicles. However, whether vaspin regulates steroidogenesis and luteolysis in the corpus luteum (CL) is still unknown. The aim of this study was first to determine the expression of vaspin and its receptor GRP78 in porcine CL at the early, middle, and late stages of the luteal phase. Next, we investigated the hormonal regulation of vaspin levels in luteal cells in response to luteinizing hormone (LH), progesterone (P4), and prostaglandin PGE2 and PGF2α. Finally, we determined vaspin's direct impact on luteal cells steroidogenesis, luteolysis and kinases phosphorylation. Our results are the first to show higher vaspin/GRP78 expression in middle and late vs early stages; immunohistochemistry showed cytoplasmic vaspin/GRP78 localization in small and large luteal cells. In vitro, we found that LH, P4, PGE2, and PGF2α significantly decreased vaspin levels. Furthermore, vaspin stimulated steroidogenesis by the activation of the GRP78 receptor and protein kinase A (PKA). Also, vaspin increased the ratio of luteotropic PGE2 to luteolytic PGF2α secretion via GRP78 and mitogen-activated kinase (MAP3/1). Moreover, vaspin, in a dose-dependent manner, decreased GRP78 expression, while it, in a time-dependent manner, increased kinases PKA and MAPK3/1 phosphorylation. Taken together, we found that vaspin/GRP78 expression depends on the luteal phase stage and vaspin affects luteal cells endocrinology, indicating that vaspin is a new regulator of luteal cells steroidogenesis and CL formation.

Keywords: corpus luteum; luteolysis; steroidogenesis; vaspin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Corpus Luteum / drug effects
  • Corpus Luteum / metabolism*
  • Dinoprost / pharmacology
  • Dinoprostone / pharmacology
  • Female
  • Heat-Shock Proteins / metabolism
  • Luteal Cells / drug effects
  • Luteal Cells / metabolism*
  • Luteinizing Hormone / pharmacology
  • Luteolysis / drug effects
  • Progesterone / pharmacology
  • Serpins / drug effects
  • Serpins / metabolism*
  • Signal Transduction / drug effects
  • Swine

Substances

  • Heat-Shock Proteins
  • Serpins
  • Progesterone
  • Luteinizing Hormone
  • Dinoprost
  • Dinoprostone