Control of the Photo-Isomerization Mechanism in 3 H-Naphthopyrans to Prevent Formation of Unwanted Long-Lived Photoproducts

Int J Mol Sci. 2020 Oct 22;21(21):7825. doi: 10.3390/ijms21217825.

Abstract

In the photochromic reactions of 3H-naphthopyrans, two colored isomers TC (transoid-cis) and TT (transoid-trans) are formed. In terms of optimized photo-switchable materials, synthetic efforts are nowadays evolving toward developing 3H-naphthopyran derivatives that would not be able to photoproduce the long-living transoid-trans, TT, photoproduct. The substitution with a methoxy group at position 10 results in significant reduction of the TT isomer formation yield. The TC photophysics responsible for TT suppression were revealed here using a combination of multi-scale time resolved absorption UV-vis spectroscopy and ab initio calculations. The substitution changes the TC excited-state potential energy landscape, the bicycle-pedal isomerization path is favored over the rotation around a single double bond. The bicycle-pedal path is aborted in halfway to TT formation due to S1→S0 internal conversion populating back the TC species in the ground electronic state. This is validated by a shorter TC S1 state lifetime for methoxy derivative in comparison to that of the parent-unsubstituted compound (0.47 ± 0.05 ps vs. 0.87 ± 0.09 ps) in cyclohexane.

Keywords: bicycle-pedal isomerization; naphthopyran; photochromism; photodynamics; photophysics; quantum chemical calculations; reaction mechanisms; time-resolved spectroscopy.

MeSH terms

  • Absorptiometry, Photon
  • Benzopyrans / chemistry*
  • Isomerism
  • Models, Chemical
  • Photochemical Processes*
  • Spectrophotometry, Ultraviolet

Substances

  • Benzopyrans