Phyllotaxis from a Single Apical Cell

Trends Plant Sci. 2021 Feb;26(2):124-131. doi: 10.1016/j.tplants.2020.09.014. Epub 2020 Oct 20.

Abstract

Phyllotaxis, the geometry of leaf arrangement around stems, determines plant architecture. Molecular interactions coordinating the formation of phyllotactic patterns have mainly been studied in multicellular shoot apical meristems of flowering plants. Phyllotaxis evolved independently in the major land plant lineages. In mosses, it arises from a single apical cell, raising the question of how asymmetric divisions of a single-celled meristem create phyllotactic patterns and whether associated genetic processes are shared across lineages. We present an overview of the mechanisms governing shoot apical cell specification and activity in the model moss, Physcomitrium patens, and argue that similar molecular regulatory modules have been deployed repeatedly across evolution to operate at different scales and drive apical function in convergent shoot forms.

Keywords: Arabidopsis; Physcomitrella; Physcomitrium; moss; phyllotaxis.

Publication types

  • Review

MeSH terms

  • Bryopsida*
  • Meristem* / genetics
  • Plant Leaves
  • Plant Shoots