Electrochemical and phylogenetic comparisons of oxygen-reducing electroautotrophic communities

Biosens Bioelectron. 2021 Jan 1:171:112700. doi: 10.1016/j.bios.2020.112700. Epub 2020 Oct 10.

Abstract

The mechanisms of extracellular electron transfer and the microbial taxa associated with the observed electroactivity are fundamental to oxygen-reducing microbial cathodes. Here we confirmed the apparent 'electroautotrophic' behavior of electroactive biofilms (EABs) grown on carbon electrodes at + 0.20V vs. Ag/AgCl under air. The EABs catalyzed O2 electroreduction into water ─ as demonstrated by a rotating ring disc experiment ─ and performed quasi-reversible heterogeneous electron transfer (HET). By using electrodes of low surface capacitance, we report for the first time nonturnover redox peaks that are very likely intrinsic to the redox protein(s) performing the HET. Because the formal potential of redox proteins is pH-dependent, we investigated the evolution of characteristic potentials of the EABs with the solution pH: (i) open circuit potential, (ii) half-wave potential, and (iii) averaged peak potential of nonturnover cyclic voltammograms, which is presumably the formal potential of the primary electron acceptor(s) for the community. In addition to describing the redox thermodynamics behind HET, we suggest that the corresponding data provides an electrochemical fingerprint that could help in comparing the electroactivity of diverse microbial communities. The taxon with the highest relative abundance in our EABs was an unclassified member of the Gammaproteobacteria that was phylogenetically closely related to most other abundant unclassified Gammaproteobacteria commonly reported in EABs reducing O2 at high potentials, further suggesting that those taxa are responsible for the bioelectroactivity. Phylogenetic and electrochemical similarities between reported EABs jointly support the hypothesis that similar biomolecular mechanisms may be responsible for this highly probable electroautotrophic metabolism.

Keywords: Electroactive biofilms; Electrochemical fingerprint; Formal potential; Heterogeneous electron transfer; Microbial cathodes; Redox protein.

MeSH terms

  • Biofilms
  • Biosensing Techniques*
  • Electrodes
  • Oxidation-Reduction
  • Oxygen*
  • Phylogeny*

Substances

  • Oxygen