Rapid measurement of cardiac neuropeptide dynamics by capacitive immunoprobe in the porcine heart

Am J Physiol Heart Circ Physiol. 2021 Jan 1;320(1):H66-H76. doi: 10.1152/ajpheart.00674.2020. Epub 2020 Oct 23.

Abstract

Sympathetic control of regional cardiac function occurs through postganglionic innervation from stellate ganglia and thoracic sympathetic chain. Whereas norepinephrine (NE) is their primary neurotransmitter, neuropeptide Y (NPY) is an abundant cardiac cotransmitter. NPY plays a vital role in homeostatic processes including angiogenesis, vasoconstriction, and cardiac remodeling. Elevated sympathetic stress, resulting in increased NE and NPY release, has been implicated in the pathogenesis of several cardiovascular disorders including hypertension, myocardial infarction, heart failure, and arrhythmias, which may result in sudden cardiac death. Current methods for the detection of NPY in myocardium are limited in their spatial and temporal resolution and take days to weeks to provide results [e.g., interstitial microdialysis with subsequent analysis by enzyme-linked immunosorbent assay (ELISA), high performance liquid chromatography (HPLC), or mass spectrometry]. In this study, we report a novel approach for measurement of interstitial and intravascular NPY using a minimally invasive capacitive immunoprobe (C.I. probe). The first high-spatial and temporal resolution, multichannel measurements of NPY release in vivo are provided in both myocardium and transcardiac vascular space in a beating porcine heart. We provide NPY responses evoked by sympathetic stimulation and ectopic ventricular pacing and compare these to NE release and hemodynamic responses. We extend this approach to measure both NPY and vasoactive intestinal peptide (VIP) and show differential release profiles under sympathetic stimulation. Our data demonstrate rapid and local changes in neurotransmitter profiles in response to sympathetic cardiac stressors. Future implementations include real-time intraoperative determination of cardiac neuropeptides and deployment as a minimally invasive catheter.NEW & NOTEWORTHY The sympathetic nervous system regulates cardiac function through release of neurotransmitters and neuropeptides within the myocardium. Neuropeptide Y (NPY) acts as an acute cardiac vasoconstrictor and chronically to regulate angiogenesis and cardiac remodeling. Current methodologies for the measure of NPY are not capable of providing rapid readouts on a single-sample basis. Here we provide the first in vivo methodology to report dynamic, localized NPY levels within both myocardium and vascular compartments in a beating heart.

Keywords: autonomic nervous system; capacitive immunoprobe; cardiac; neuropeptide Y; sympathetic.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cardiac Pacing, Artificial
  • Electric Stimulation
  • Electrochemical Techniques*
  • Heart / innervation*
  • Male
  • Myocardium / metabolism*
  • Neuropeptide Y / metabolism*
  • Norepinephrine / metabolism
  • Signal Processing, Computer-Assisted
  • Sus scrofa
  • Sympathetic Nervous System / physiology*
  • Time Factors

Substances

  • Neuropeptide Y
  • Norepinephrine