Diffusive Limit of Non-Markovian Quantum Jumps

Phys Rev Lett. 2020 Oct 9;125(15):150403. doi: 10.1103/PhysRevLett.125.150403.

Abstract

We solve two long-standing problems for stochastic descriptions of open quantum system dynamics. First, we find the classical stochastic processes corresponding to non-Markovian quantum state diffusion and non-Markovian quantum jumps in projective Hilbert space. Second, we show that the diffusive limit of non-Markovian quantum jumps can be taken on the projective Hilbert space in such a way that it coincides with non-Markovian quantum state diffusion. However, the very same limit taken on the Hilbert space leads to a completely new diffusive unraveling, which we call non-Markovian quantum diffusion. Further, we expand the applicability of non-Markovian quantum jumps and non-Markovian quantum diffusion by using a kernel smoothing technique allowing a significant simplification in their use. Lastly, we demonstrate the applicability of our results by studying a driven dissipative two level atom in a non-Markovian regime using all of the three methods.