Natural convection of [Formula: see text]-water nanofluid in a non-Darcian wavy porous cavity under the local thermal non-equilibrium condition

Sci Rep. 2020 Oct 22;10(1):18048. doi: 10.1038/s41598-020-75095-5.

Abstract

This study investigates thermal natural convective heat transfer in a nanofluid filled-non-Darcian porous and wavy-walled domain under the local thermal non-equilibrium condition. The considered cavity has corrugated and cold vertical walls and insulated horizontal walls except the heated part positioned at the bottom wall. The transport equations in their non-dimensional model are numerically solved based on the Galerkin finite-element discretization technique. The dimensionless governing parameters of the present work are the nanoparticle in volume concentration, the Darcy number, number of undulations, modified heat conductivity ratio, dimensionless heated part length, and location. Comparisons with other published theoretical and experimental results show good agreement with the present outcomes. The findings indicate that the heater length, its position, and the waves number on the side vertical walls as well as the nanoparticles concentration can be the control parameters for free convective motion and heat transport within the wavy cavity.