A minimum quantum chemistry CCSD(T)/CBS dataset of dimeric interaction energies for small organic functional groups

J Chem Phys. 2020 Oct 21;153(15):154301. doi: 10.1063/5.0019392.

Abstract

We have performed a quantum chemistry study on the bonding patterns and interaction energies for 31 dimers of small organic functional groups (dubbed the SOFG-31 dataset), including the alkane-alkene-alkyne (6 + 4 + 4 = 14, AAA) groups, alcohol-aldehyde-ketone (4 + 4 + 3 = 11, AAK) groups, and carboxylic acid-amide (3 + 3 = 6, CAA) groups. The basis set superposition error corrected super-molecule approach using the second order Møller-Plesset perturbation theory (MP2) with the Dunning's aug-cc-pVXZ (X = D, T, Q) basis sets has been employed in the geometry optimization and energy calculations. To calibrate the MP2 calculated interaction energies for these dimeric complexes, we perform single-point calculations with the coupled cluster with single, double, and perturbative triple excitations method at the complete basis set limit [CCSD(T)/CBS] using the well-tested extrapolation methods. In order to gain more physical insights, we also perform a parallel series of energy decomposition calculations based on the symmetry adapted perturbation theory (SAPT). The collection of these CCSD(T)/CBS interaction energy values can serve as a minimum quantum chemistry dataset for testing or training less accurate but more efficient calculation methods. As an application, we further propose a segmental SAPT model based on chemically recognizable segments in a specific functional group. These model interactions can be used to construct coarse-grained force fields for larger molecular systems.