Lead Particle Size Fractionation and Identification in Newark, New Jersey's Drinking Water

Environ Sci Technol. 2020 Nov 3;54(21):13672-13679. doi: 10.1021/acs.est.0c03797. Epub 2020 Oct 22.

Abstract

Following a pH reduction in their drinking water over a span of more than 20 years, the City of Newark, New Jersey, has struggled with elevated lead (Pb) release from Pb service lines and domestic plumbing in the zone fed by the Pequannock Water Treatment Plant. In response, Newark initiated orthophosphate addition and provided faucet-mounted point-of-use (POU) filters and pitcher filters certified for Pb and particulate reduction under NSF/ANSI Standards 53 and 42 to residential homes in that zone. Water chemistry analysis and size fractionation sampling were performed at four of these houses. Analysis of the particulate material retained by the fractionation filters revealed that Pb was dominantly present in the water as fine Pb(II) orthophosphate particles. A considerable amount of the particulates occurred as a nanoscale fraction that sometimes passed through the POU faucet or pitcher filtration units. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive spectroscopy analyses showed that the nanoparticles (<100 nm) and their aggregates were composed of Pb, phosphorus, and chlorine, which are consistent with pyromorphite, Pb5(PO4)3Cl. Electron diffraction and X-ray analyses supported the presence of hydroxypyromorphite and chloropyromorphite nanoparticles and the size range estimates from the imaging. This research confirmed that nonadherent Pb(II)-orthophosphate nanoparticles were an important form of Pb in drinking water in the Pequannock water quality zone of Newark.

MeSH terms

  • Chlorine
  • Drinking Water*
  • New Jersey
  • Particle Size
  • Water Purification*

Substances

  • Drinking Water
  • Chlorine