"Spectrum of 46 XY Disorders of Sex Development": A Hospital-based Cross-sectional Study

Indian J Endocrinol Metab. 2020 Jul-Aug;24(4):360-365. doi: 10.4103/ijem.IJEM_98_20. Epub 2020 Aug 27.

Abstract

Background: Disorders of sex development (DSD) are a wide range of relatively rare conditions having diverse pathophysiology. Identification of an underlying cause can help in treating any coexisting hormone deficiencies and can help with anticipating any other immediate or long-term health concerns.

Objective: To study the clinical and biochemical profile of patients with 46 XY DSD along with androgen receptor (AR) gene mutation status in selected group of patients.

Methods: A cross-sectional study was conducted after enrolling the eligible DSD patients. Thorough elicitation of history and detailed clinical examination was done. Assays for luteinizing hormone, follicle-stimulating hormone, testosterone, dihydrotestosterone, androstenedione, AMH & Inhibin B (where indicated), and human chorionic gonadotropin stimulation were done as per protocol.

Results: In total, 48 patients were included in the study. Ambiguous genitalia (58.3%) followed by hypospadias (33.3%) were common presentation. Androgen biosynthetic defect were the most commonly encountered diagnosis followed by androgen insensitivity syndrome (AIS). Swyer syndrome was diagnosed in 4.2% of cases; partial gonadal dysgenesis, ovotesticular DSD, and vanishing testis syndrome contributed to 2% of cases each. Eight cases (16.7%) who presented with isolated proximal and midshaft hypospadias for whom no diagnosis was found were categorized in the "etiology unclear" group. AR gene mutation analysis designed against specific exons did not yield any results.

Conclusion: 46 XY DSD is a heterogeneous group of patients with a varying age of presentation and a diverse clinical profile. Most patients are reared as males and maintained the same gender identity except in isolated cases. Diagnosis of AIS remains a clinical challenge as a definite hormonal criterion does not exist and genetic mutations in AR gene may be negative. Flanking region sequencing, whole genome sequencing, and promoter region sequencing may reveal pathogenic variants. Variations in other genes regulating AR pathway may also be candidates to be studied.

Keywords: AR gene mutation; Ambiguous genitalia; HCG stimulation test; disorders of sex development.