Catalytic and physical features of a naturally immobilized Yarrowia lipolytica lipase in cell debris (LipImDebri) displaying high thermostability

3 Biotech. 2020 Oct;10(10):454. doi: 10.1007/s13205-020-02444-6. Epub 2020 Sep 26.

Abstract

Lipase activity (337 U/g dry weight of cell debris) was detected in cell debris after ultrasound treatment of Yarrowia lipolytica cells cultivated in residual frying palm oil. It is a naturally immobilized lipase with protein content of 47%, herein called LipImDebri. This immobilized biocatalyst presents low hydrophobicity (8%), that can be increased adjusting pH and buffer type. Despite apparent intact cells, electron microscopy showed a shapeless and flat surface for LipImDebri and optical microscopy revealed no cell viability. Besides, an inferior mean diameter (3.4 mm) in relation to whole cells reveals structure modification. A high negative zeta potential value (- 33.86 mV) for pH 6 and 25 °C suggests that LipImDebri is a stable suspension in aqueous solution. Fourier Transform Infrared Spectra (FTIR) expose differences between LipImDebri and extracellular lipase extract signaling a physical interaction between enzyme and cell debris, which is possibly the reason for the high thermostability (k d = 0.246 h-1; t 1/2 = 2.82 h at 50 °C, pH 7.0). A good adjustment of LipImDebri kinetic data with Hill equation (R 2 = 0.95) exposes an allosteric behavior related to the presence of more than one lipase isoform. These features reveal that LipImDebri can be a good catalyst for industrial applications.

Keywords: Cell debris; Cell-bounded enzymes; Electron microscopy; Lipase; Thermostability; Yarrowia lipolytica.