Inducible expression of heat shock protein 20 protects airway epithelial cells against oxidative injury involving the Nrf2-NQO-1 pathway

Cell Biosci. 2020 Oct 19:10:120. doi: 10.1186/s13578-020-00483-3. eCollection 2020.

Abstract

Background: Heat shock protein (HSP) 20 is a molecular chaperone that exerts multiple protective functions in various kinds of tissues. However, the expression of HSP20 and its specific functions in airway epithelial cells (AECs) remain elusive.

Results: In current study, we first confirmed the inducible expression of HSP20 in mouse AECs and in a human bronchial epithelial cell line BEAS-2B cells, under different oxidant stressors. Then by establishing a HSP20-abundant mouse model with repeated low-level-ozone exposures and stimulating this model with a single high-level ozone exposure, we found that the HSP20 abundance along with its enhanced phosphorylation potentially contributed to the alleviation of oxidative injuries, evidenced by the decreases in the bodyweight reduction, the BAL neutrophil accumulation, the AECs shedding, and the BAL concentrations of albumin and E-cadherin. The biological function of HSP20 and its molecular mechanisms were further investigated in BEAS-2B cells that were transfected with HSP20-, unphosphorylatable HSP20(Ala) or empty vector plasmids prior to the stimulation of H2O2, of which its oxidant capacity has been proved to be similar with those of ozone in an air-liquid culture system. We found that the H2O2-induced intracellular ROS level and the early cell apoptosis were attenuated in the HSP20- but not HSP20(Ala)- transfected cells. The intracellular expression of NQO-1 (mRNA and protein) and the intranuclear content of Nrf2 were significantly increased in the HSP20- transfected cells but not in the HSP20(Ala)- and empty vector-transfected cells after the stimulation of H2O2.

Conclusions: The inducible expression of HSP20 in AECs by oxidative stress exerts protective roles against oxidative damages, which may involve the activation of the Nrf2-NQO-1 pathway.

Keywords: Airway epithelial cell; Heat shock protein 20; NQO-1; Nrf2; Oxidative stress.