Methods and Influencing Factors for the Simple and Rapid Identification of Depleted Uranium Weapon Use under Battlefield Conditions

Health Phys. 2021 Jan;120(1):62-71. doi: 10.1097/HP.0000000000001281.

Abstract

The purpose of this paper is to explore how to rapidly and easily identify depleted uranium (DU) samples under battlefield conditions and to study the factors that influence their measurement. The air-absorbed dose rate and surface contamination levels for DU samples of 2-330 g were measured using a patrol instrument and portable energy spectrometer. The results were analyzed in accordance with IAEA standards for judging radioactive substances. The energy spectra of 5-g quantities of DU samples were analyzed using a high-purity germanium gamma spectrometer, and the uranium content of 100 mg DU samples was determined with an inductively coupled plasma mass spectrometer to clarify the type and composition of the uranium. The same batches of DU samples were identified using a portable gamma-ray spectrometer. We added 0-5 g environmental soil powders at different proportions. After sealing, the spectra were collected with a detection distance of 1-5 cm for 10 min. The activities of U and U nuclides in the samples were detected with an NaI(TI) scintillation detector. The U and U mass abundances in samples were calculated from measured specific activities. The sample was determined to contain DU if the U to U ratio was below 0.00723. It is found that for detecting DU materials with a low activity, surface contamination level measurements are more effective than calculating the air-absorbed external irradiation dose rate. Hence, for low-activity samples suspected to be radioactive, a radiometer with a high sensitivity for surface contamination is recommended, and the optimal measurement distance is 1-3 cm. Under all detection conditions, U can be identified using a portable gamma spectrometer, whereas U can only be detected under certain conditions. If these nuclides can be detected simultaneously, a U to U ratio of below 0.00723 indicates the presence of DU. The main factors affecting this identification include the sample mass, sample purity, measurement distance, and measurement time. For the rapid identification of DU with a portable gamma-ray spectrometer, the mass of uranium in the sample must be more than 1 g, the measuring distance needs to be less than 1 cm, and the measuring time must be 1-10 min. It is feasible to use a portable gamma-ray spectrometer to rapidly identify the types and composition of nuclides in DU samples. The detection of U activity is a precondition for the identification of DU.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alpha Particles
  • Germanium
  • Humans
  • Mass Spectrometry / methods
  • Nuclear Weapons*
  • Radiometry / instrumentation
  • Radiometry / methods*
  • Soil Pollutants, Radioactive / analysis*
  • Spectrometry, Gamma / methods
  • Uranium / analysis*

Substances

  • Soil Pollutants, Radioactive
  • Uranium-238
  • Germanium
  • Uranium
  • Uranium-235