ECGNET: Learning where to attend for detection of atrial fibrillation with deep visual attention

IEEE EMBS Int Conf Biomed Health Inform. 2019 May:2019:10.1109/BHI.2019.8834637. doi: 10.1109/BHI.2019.8834637. Epub 2019 Sep 12.

Abstract

The complexity of the patterns associated with atrial fibrillation (AF) and the high level of noise affecting these patterns have significantly limited the application of current signal processing and shallow machine learning approaches to accurately detect this condition. Deep neural networks have shown to be very powerful to learn the non-linear patterns in various problems such as computer vision tasks. While deep learning approaches have been utilized to learn complex patterns related to the presence of AF in electrocardiogram (ECG) signals, they can considerably benefit from knowing which parts of the signal is more important to focus on during learning. In this paper, we introduce a two-channel deep neural network to more accurately detect the presence of AF in the ECG signals. The first channel takes in an ECG signal and automatically learns where to attend for detection of AF. The second channel simultaneously takes in the same ECG signal to consider all features of the entire signal. Besides improving detection accuracy, this model can guide the physicians via visualization that what parts of the given ECG signal are important to attend while trying to detect atrial fibrillation. The experimental results confirm that the proposed model significantly improves the performance of AF detection on well-known MIT-BIH AF database with 5-s ECG segments (achieved a sensitivity of 99.53%, specificity of 99.26% and accuracy of 99.40%).

Keywords: Atrial fibrillation; ECG analysis; attention mechanism; deep learning.