Ion irradiation induced phase transformation in gold nanocrystalline films

Sci Rep. 2020 Oct 20;10(1):17864. doi: 10.1038/s41598-020-74779-2.

Abstract

Gold is a noble metal typically stable as a solid in a face-centered cubic (FCC) structure under ambient conditions; however, under particular circumstances aberrant allotropes have been synthesized. In this work, we document the phase transformation of 25 nm thick nanocrystalline (NC) free-standing gold thin-film via in situ ion irradiation studied using atomic-resolution transmission electron microscopy (TEM). Utilizing precession electron diffraction (PED) techniques, crystallographic orientation and the radiation-induced relative strains were measured and furthermore used to determine that a combination of surface and radiation-induced strains lead to an FCC to hexagonal close packed (HCP) crystallographic phase transformation upon a 10 dpa radiation dose of Au4+ ions. Contrary to previous studies, HCP phase in nanostructures of gold was stabilized and did not transform back to FCC due to a combination of size effects and defects imparted by damage cascades.