Numerical Simulations of Destructive Tests of Cast Iron Columns Strengthened with a CFRP Coating

Materials (Basel). 2020 Oct 16;13(20):4608. doi: 10.3390/ma13204608.

Abstract

In many cases, there is a need to reinforce the existing, sometimes very old, cast iron columns. The paper describes a proposed and completed reinforcement procedure using an external, thin coating (sleeve or jacket) made of composite (carbon fiber reinforced polymer-CFRP). The strengthening effect was verified in destructive tests performed on two original columns (without reinforcement) and two other, identical columns strengthened by means of the proposed technique. Due to the expected very high load capacity of the axially loaded column, the test rig was designed to allow the application of the force on a big eccentricity. For this purpose a special base was designed and fabricated. Destructive tests have confirmed the high effectiveness of the adopted strengthening technique. The main objective of the present paper is a numerical confirmation of experimental results. All material parameters required in the numerical model were determined in laboratory tests. Simulation was performed using the finite element method-based on two systems, COSMOS/M and Simulia Abaqus. Numerical models were validated on results of the analytical assessment of stresses presented in the paper as well. Results of numerical simulations made on nonlinear models were compared with the experimental results. Destruction mechanisms observed in the experiments were confirmed in performed numerical simulations.

Keywords: CFRP; analytical assessment; cast iron columns; composite jacket; destructive tests; finite element method; numerical simulations; reinforcement; strengthening.