Fouling Mitigation by Cationic Polymer Addition into a Pilot-Scale Anaerobic Membrane Bioreactor Fed with Blackwater

Polymers (Basel). 2020 Oct 16;12(10):2383. doi: 10.3390/polym12102383.

Abstract

Cationic polymers have proven to be suitable flux enhancers (FEs) in large-scale aerobic membrane bioreactors (MBRs), whereas in anaerobic membrane bioreactors (AnMBRs) research is scarce, and so far, only done at lab-scale. Results from MBRs cannot be directly translated to AnMBRs because the extent and nature of membrane fouling under anaerobic and aerobic conditions are different. Our research focused on the long-term effect of dosing the cationic polymer Adifloc KD451 to a pilot AnMBR, fed with source-separated domestic blackwater. A single dosage of Adifloc KD451 at 50 mg L-1 significantly enhanced the filtration performance in the AnMBR, revealed by a decrease in both fouling rate and total filtration resistance. Nevertheless, FE addition had an immediate negative effect on the specific methanogenic activity (SMA), but this was a reversible process that had no adverse effect on permeate quality or chemical oxygen demand (COD) removal in the AnMBR. Moreover, the FE had a long-term positive effect on AnMBR filtration performance and sludge filterability. These findings indicate that dosing Adifloc KD451 is a suitable strategy for fouling mitigation in AnMBRs because it led to a long-term improvement in filtration performance, while having no significant adverse effects on permeate quality or COD removal.

Keywords: anaerobic membrane bioreactor (AnMBR); cationic polymer; flux enhancer; membrane fouling; pilot plant; sludge filterability.