Correlation between alignment geometries and memory effect in a surface-stabilized ferroelectric liquid crystal

Phys Rev E. 2020 Sep;102(3-1):032703. doi: 10.1103/PhysRevE.102.032703.

Abstract

Memory effect in weakly aligned surface stabilized ferroelectric liquid crystal (SSFLC) material has been investigated by electro-optical and dielectric spectroscopy in three configurations of alignment: antiparallel, 90^{∘} twisted, and unaligned planar samples. It has been observed that two types of molecular dynamics exist in antiparallel rubbed cell in which memory effect is observed for longer duration than in other samples. One dielectric relaxation process is near the surface of the electrode and a second is in the bulk of the SSFLC. Both the molecular dynamics contribute in the switching process and affect the memory phenomenon in surface stabilized geometries. However, a single dielectric process is observed in twisted geometry in which the sample is showing shorter memory effect than in antiparallel and this is compared with unaligned samples also having cell thickness less than the pitch value of FLC. In an unaligned sample, a single dielectric process is observed and the smaple does not show memory effect at all. The investigation is significant to understand the anomalies occurring in memory observations in various geometries.