Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle

Bioinspir Biomim. 2020 Dec 21;16(2). doi: 10.1088/1748-3190/abc292.

Abstract

Allomyrina dichotomahas a natural ultra-high flying ability and maneuverability. Especially its ability to fly flexibly in the air, makes it more adaptable to the harsh ecological environment. In this study, a bionic flapping-wing micro air vehicle (FMAV) is designed and fabricated by mimicking the flight mode ofA. dichotoma. Parametric design was employed for combining the airframe structure and flight characteristics analysis. To improve the transmission efficiency and compactness of the FMAV mechanisms, this study first analyses the body structure ofA. dichotoma, and then proposes a novel mechanism of FMAV based on its biological motion characteristics, the flight motion characteristics, and its musculoskeletal system. By optimizing the flapping-wing mechanism and mimicking the flying mechanism ofA. dichotoma, the large angle amplitude and the high-frequency flapping motion can be achieved to generate more aerodynamic force. Meanwhile, to improve the bionic effect and the wing performance of FMAV, the flexible deformation ofA. dichotomawings for each flapping period was observed by a high-speed camera. Furthermore, the bionic design of wings the prototype was carried out, therefore the wings can generate a high lift force in the flapping process. The experiment demonstrated that the aircraft can achieve a flapping angle of 160 degrees and 30 Hz flapping frequency. The attitude change of FMAV is realized by mimicking the movement for the change of attitude of theA. dichotoma, by changing the angle of attack of the wing, and executing the flight action of multiple degrees of freedom including pitch, roll and yaw. Finally, the aerodynamic experiment demonstrated that the prototype can offer 27.8 g lift and enough torque for altitude adjustment.

Keywords: allomyrina dichotoma; flapping-wing mechanism; flexible wing; hovering flight; micro air vehicle.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Bionics
  • Equipment Design
  • Flight, Animal*
  • Models, Biological
  • Wings, Animal*