CEN-tools: an integrative platform to identify the contexts of essential genes

Mol Syst Biol. 2020 Oct;16(10):e9698. doi: 10.15252/msb.20209698.

Abstract

An emerging theme from large-scale genetic screens that identify genes essential for cell fitness is that essentiality of a given gene is highly context-specific. Identification of such contexts could be the key to defining gene function and also to develop novel therapeutic interventions. Here, we present Context-specific Essentiality Network-tools (CEN-tools), a website and python package, in which users can interrogate the essentiality of a gene from large-scale genome-scale CRISPR screens in a number of biological contexts including tissue of origin, mutation profiles, expression levels and drug responses. We show that CEN-tools is suitable for the systematic identification of genetic dependencies and for more targeted queries. The associations between genes and a given context are represented as dependency networks (CENs), and we demonstrate the utility of these networks in elucidating novel gene functions. In addition, we integrate the dependency networks with existing protein-protein interaction networks to reveal context-dependent essential cellular pathways in cancer cells. Together, we demonstrate the applicability of CEN-tools in aiding the current efforts to define the human cellular dependency map.

Keywords: CRISPR; NRAS-mutant melanoma; context-specific essentiality; networks; omics integration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CRISPR-Cas Systems
  • Cell Line, Tumor
  • Computational Biology / methods*
  • Gene Expression Regulation, Neoplastic / genetics
  • Gene Knockout Techniques
  • Gene Regulatory Networks
  • Genes, Essential*
  • Humans
  • Melanoma / genetics*
  • Melanoma / metabolism*
  • Melanoma / pathology
  • Metabolomics / methods*
  • Mutation
  • SOXE Transcription Factors / genetics
  • SOXE Transcription Factors / metabolism
  • Serum Response Factor / genetics
  • Serum Response Factor / metabolism
  • Signal Transduction / genetics
  • Skin Neoplasms / genetics*
  • Skin Neoplasms / metabolism*
  • Skin Neoplasms / pathology
  • Software

Substances

  • SOX10 protein, human
  • SOXE Transcription Factors
  • SRF protein, human
  • Serum Response Factor