POM-Based MOF-Derived Co3O4/CoMoO4 Nanohybrids as Anodes for High-Performance Lithium-Ion Batteries

ACS Omega. 2020 Oct 1;5(40):26230-26236. doi: 10.1021/acsomega.0c03929. eCollection 2020 Oct 13.

Abstract

Polyoxometalate (POM)-based metal-organic framework (MOF)-derived Co3O4/CoMoO4 nanohybrids were successfully fabricated by a facile solvothermal method combined with a calcination process, in which a Co-based MOF, that is, ZIF-67 acts as a template while a Keggin-type POM (H3PMo12O40) serves as a compositional modulator. The materials were characterized through scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS) mapping, and electrochemical measurements. When the Co3O4/CoMoO4 nanohybrids were applied as anode materials for lithium-ion batteries (LIBs), they display large lithium storage capacity (around 900 mAh g-1 at 0.1 A g-1) and high cycling stability, and they can also exhibit good rate performances. This work might shed some light on the POM-based MOF host-guest synthesis strategy for the preparation of polymetallic oxides for enhanced electrochemical energy storage and further applications.