Catalytic Reductions Without External Hydrogen Gas: Broad Scope Hydrogenations with Tetrahydroxydiboron and a Tertiary Amine

Adv Synth Catal. 2020 Jan 7;362(1):166-176. doi: 10.1002/adsc.201901099. Epub 2019 Nov 13.

Abstract

Facile reduction of aryl halides with a combination of 5% Pd/C, B2(OH)4, and 4-methylmorpholine is reported. Aryl bromides, iodides, and chlorides were efficiently reduced. Aryl dihalides containing two different halogen atoms underwent selective reduction: I over Br and Cl, and Br over Cl. Beyond these, aryl triflates were efficiently reduced. This combination was broadly general, effectuating reductions of benzylic halides and ethers, alkenes, alkynes, aldehydes, and azides, as well as for N-Cbz deprotection. A cyano group was unaffected, but a nitro group and a ketone underwent reduction to a low extent. When B2(OD)4 was used for aryl halide reduction, a significant amount of deuteriation occurred. However, H atom incorporation competed and increased in slower reactions. 4-Methylmorpholine was identified as a possible source of H atoms in this, but a combination of only 4-methylmorpholine and Pd/C did not result in reduction. Hydrogen gas has been observed to form with this reagent combination. Experiments aimed at understanding the chemistry led to the proposal of a plausible mechanism and to the identification of N,N-bis(methyl-d 3)pyridine-4-amine (DMAP-d 6) and B2(OD)4 as an effective combination for full aromatic deuteriation.

Keywords: deuteriation; diboron; hydrogenation; reduction; tetrahydroxydiboron.