The Role of Buckling in the Estimation of Compressive Strength of Corrugated Cardboard Boxes

Materials (Basel). 2020 Oct 14;13(20):4578. doi: 10.3390/ma13204578.

Abstract

This paper presents analytical methods for estimating the static top-to-bottom compressive strength of simple corrugated packaging, in which the torsional and shear stiffness of corrugated cardboard as well as the panel depth-to-width ratio are included. The methods are compared herein with a basic and more detailed buckling description with the successful McKee formula, which is over fifty years old but still widely used among packaging designers and quality control departments. Additionally, the assumptions and applied simplifications used in the literature are analyzed, and the limits of applicability of different versions of the selected methods are checked. Finally, all approaches are verified with the experiment results of various packaging designs made of corrugated cardboard. The results show that, for certain proportions of dimensions of simple flap boxes, simplified methods give an even two times larger estimation error than the analytical approach proposed in the paper. Furthermore, it is evidenced that including all flexural, torsional and shear stiffnesses in the buckling force estimation gives a very precise prediction of the box compressive strength for the full range of package dimensions.

Keywords: McKee formula; box strength; buckling; corrugated board; laboratory tests; orthotropic panels.