Facile Synthesis of the Amorphous Carbon Coated Fe-N-C Nanocatalyst with Efficient Activity for Oxygen Reduction Reaction in Acidic and Alkaline Media

Materials (Basel). 2020 Oct 13;13(20):4551. doi: 10.3390/ma13204551.

Abstract

With the assistance of surfactant, Fe nanoparticles are supported on g-C3N4 nanosheets by a simple one-step calcination strategy. Meanwhile, a layer of amorphous carbon is coated on the surface of Fe nanoparticles during calcination. Transmission electron microscopy (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma (ICP) were used to characterize the morphology, structure, and composition of the catalysts. By electrochemical evaluate methods, such as linear sweep voltammetry (LSV) and cyclic voltammetry (CV), it can be found that Fe25-N-C-800 (calcinated in 800 °C, Fe loading content is 5.35 wt.%) exhibits excellent oxygen reduction reaction (ORR) activity and selectivity. In 0.1 M KOH (potassium hydroxide solution), compared with the 20 wt.% Pt/C, Fe25-N-C-800 performs larger onset potential (0.925 V versus the reversible hydrogen electrode (RHE)) and half-wave potential (0.864 V vs. RHE) and limits current density (2.90 mA cm-2, at 400 rpm). In 0.1 M HClO4, it also exhibits comparable activity. Furthermore, the Fe25-N-C-800 displays more excellent stability and methanol tolerance than Pt/C. Therefore, due to convenience synthesis strategy and excellent catalytic activity, the Fe25-N-C-800 will adapt to a suitable candidate for non-noble metal ORR catalyst in fuel cells.

Keywords: P-123; coating; iron; oxygen reduction reaction.