CCN3 (NOV) Drives Degradative Changes in Aging Articular Cartilage

Int J Mol Sci. 2020 Oct 13;21(20):7556. doi: 10.3390/ijms21207556.

Abstract

Aging is a major risk factor of osteoarthritis, which is characterized by the degeneration of articular cartilage. CCN3, a member of the CCN family, is expressed in cartilage and has various physiological functions during chondrocyte development, differentiation, and regeneration. Here, we examine the role of CCN3 in cartilage maintenance. During aging, the expression of Ccn3 mRNA in mouse primary chondrocytes from knee cartilage increased and showed a positive correlation with p21 and p53 mRNA. Increased accumulation of CCN3 protein was confirmed. To analyze the effects of CCN3 in vitro, either primary cultured human articular chondrocytes or rat chondrosarcoma cell line (RCS) were used. Artificial senescence induced by H2O2 caused a dose-dependent increase in Ccn3 gene and CCN3 protein expression, along with enhanced expression of p21 and p53 mRNA and proteins, as well as SA-β gal activity. Overexpression of CCN3 also enhanced p21 promoter activity via p53. Accordingly, the addition of recombinant CCN3 protein to the culture increased the expression of p21 and p53 mRNAs. We have produced cartilage-specific CCN3-overexpressing transgenic mice, and found degradative changes in knee joints within two months. Inflammatory gene expression was found even in the rib chondrocytes of three-month-old transgenic mice. Similar results were observed in human knee articular chondrocytes from patients at both mRNA and protein levels. These results indicate that CCN3 is a new senescence marker of chondrocytes, and the overexpression of CCN3 in cartilage may in part promote chondrocyte senescence, leading to the degeneration of articular cartilage through the induction of p53 and p21.

Keywords: CCN3; NOV; SASP; aging; cellular communication network factor 3; oxidative stress; p21; p53; primary chondrocytes; senescence.

MeSH terms

  • Animals
  • Cartilage, Articular / growth & development
  • Cartilage, Articular / metabolism*
  • Cell Line, Tumor
  • Cells, Cultured
  • Cellular Senescence
  • Chondrocytes / metabolism
  • Chondrocytes / pathology
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics
  • Cyclin-Dependent Kinase Inhibitor p21 / metabolism
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Nephroblastoma Overexpressed Protein / genetics
  • Nephroblastoma Overexpressed Protein / metabolism*
  • Osteoarthritis, Knee / metabolism*
  • Osteoarthritis, Knee / pathology
  • Rats
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism

Substances

  • Ccn3 protein, mouse
  • Cyclin-Dependent Kinase Inhibitor p21
  • Nephroblastoma Overexpressed Protein
  • Trp53 protein, mouse
  • Tumor Suppressor Protein p53