Photonic Flywheel in a Monolithic Fiber Resonator

Phys Rev Lett. 2020 Oct 2;125(14):143902. doi: 10.1103/PhysRevLett.125.143902.

Abstract

We demonstrate the first compact photonic flywheel with sub-fs time jitter (averaging times up to 10 μs) at the quantum-noise limit of a monolithic fiber resonator. Such quantum-limited performance is accessed through novel two-step pumping scheme for dissipative Kerr soliton generation. Controllable interaction between stimulated Brillouin lasing and Kerr nonlinearity enhances the DKS coherence and mitigates the thermal instability challenge, achieving a remarkable 22-Hz intrinsic comb linewidth and an unprecedented phase noise of -180 dBc/Hz at 945-MHz carrier at free running. The scheme can be generalized to various device platforms for field-deployable precision metrology.