Interplay of phytohormones facilitate sorghum tolerance to aphids

Plant Mol Biol. 2022 Jul;109(4-5):639-650. doi: 10.1007/s11103-020-01083-y. Epub 2020 Oct 15.

Abstract

Interactions among phytohormones are essential for providing tolerance of sorghum plants to aphids. Plant's encounter with insect herbivores trigger defense signaling networks that fine-tune plant resistance to insect pests. Although it is well established that phytohormones contribute to antixenotic- and antibiotic-mediated resistance to insect pests, their role in conditioning plant tolerance, the most durable and promising category of host plant resistance, is largely unknown. Here, we screened a panel of sorghum (Sorghum bicolor) inbred lines to identify and characterize sorghum tolerance to sugarcane aphids (SCA; Melanaphis sacchari Zehntner), a relatively new and devastating pest of sorghum in the United States. Our results suggest that the sorghum genotype SC35, the aphid-tolerant line identified among the sorghum genotypes, displayed minimal plant biomass loss and a robust photosynthetic machinery, despite supporting higher aphid population. Phytohormone analysis revealed significantly higher basal levels of 12-oxo-phytodienoic acid, a precursor in the jasmonic acid biosynthesis pathway, in the sorghum SCA-tolerant SC35 plants. Salicylic acid accumulation appeared as a generalized plant response to aphids in sorghum plants, however, SCA feeding-induced salicylic acid levels were unaltered in the sorghum tolerant genotype. Conversely, basal levels of abscisic acid and aphid feeding-induced cytokinins were accumulated in the SCA-tolerant sorghum genotype. Our findings imply that the aphid-tolerant sorghum genotype tightly controls the relationship among phytohormones, as well as provide significant insights into the underlying mechanisms that contribute to plant tolerance to sap-sucking aphids.

Keywords: Abscisic acid; Aphids; Cytokinins; OPDA; Phytohormones; Plant tolerance; Sorghum.

MeSH terms

  • Animals
  • Aphids* / physiology
  • Edible Grain
  • Herbivory
  • Plant Growth Regulators
  • Salicylic Acid
  • Sorghum* / genetics

Substances

  • Plant Growth Regulators
  • Salicylic Acid