Design, Synthesis, and X-ray Studies of Potent HIV-1 Protease Inhibitors with P2-Carboxamide Functionalities

ACS Med Chem Lett. 2020 Mar 3;11(10):1965-1972. doi: 10.1021/acsmedchemlett.9b00670. eCollection 2020 Oct 8.

Abstract

The design, synthesis, biological evaluation, and X-ray structural studies are reported for a series of highly potent HIV-1 protease inhibitors. The inhibitors incorporated stereochemically defined amide-based bicyclic and tricyclic ether derivatives as the P2 ligands with (R)-hydroxyethylaminesulfonamide transition-state isosteres. A number of inhibitors showed excellent HIV-1 protease inhibitory and antiviral activity; however, ligand combination is critical for potency. Inhibitor 4h with a difluorophenylmethyl as the P1 ligand, crown-THF-derived acetamide as the P2 ligand, and a cyclopropylaminobenzothiazole P2'-ligand displayed very potent antiviral activity and maintained excellent antiviral activity against selected multidrug-resistant HIV-1 variants. A high resolution X-ray structure of inhibitor 4h-bound HIV-1 protease provided molecular insight into the binding properties of the new inhibitor.