Cross-sectional analysis of the health profile and dietary intake of a sample of Canadian adults diagnosed with non-alcoholic fatty liver disease

Food Nutr Res. 2020 Sep 18:64. doi: 10.29219/fnr.v64.4548. eCollection 2020.

Abstract

Background: Dietary intake is an important factor in the development and management of non-alcoholic fatty liver disease (NAFLD); however, optimal dietary composition remains unclear. Moreover, there is minimal evidence on the relationship between dietary intake and markers of liver health in Canadian adults diagnosed with NAFLD.

Objective: The aim of this study is to characterize the dietary intake of a sample of Canadian adults diagnosed with NAFLD and examine the correlations with markers of liver health.

Design: Forty-two adults recruited from the community and hepatology clinics in Calgary, Canada from 2016 to 2019 completed a 3-day food record. Anthropometrics, blood biomarkers, liver stiffness (FibroScan), and liver fat (magnetic resonance imaging) were measured. Nutrient intake was compared with the data from the 2004 and 2015 Canadian Community Health Surveys. Relationships were assessed using Pearson's correlation and regression analysis.

Results: Relative to Canadian dietary recommendations, participants consumed lower magnesium, fiber, calcium, vitamin D, and vitamin E, and higher cholesterol, saturated fat, total fat, fructose, iron, vitamin B12, selenium, phosphorus, and sodium. Compared with the national average, participants consumed more energy, fiber, sodium, total fat, and saturated fat. Systolic blood pressure (P = 0.012), serum α-2 macroglobulin (P = 0.008), carbohydrate (P = 0.022), total fat (P = 0.029), and saturated fat intakes (P = 0.029) were associated with FibroScan scores. Liver fat was correlated with serum triglycerides (P < 0.001), trunk fat (P = 0.029), added sugar (P = 0.042), phosphorus (P = 0.017), and magnesium intake (P = 0.013). In females, selenium intake was associated with liver fat (P = 0.015) and FibroScan score (P = 0.05), while in males, liver fat was associated with trunk fat (P = 0.004), body weight (P = 0.004), high-density lipoprotein (P < 0.001), and fructose intake (P = 0.037). Regression analysis showed that increasing magnesium intake corresponds to a decrease in liver fat.

Conclusion: Despite the higher energy intake of participants, overall nutrient intake is low, suggesting lower diet quality. Associations between select micronutrients and liver health markers warrant further investigation.

Keywords: NAFLD; energy intake; metabolic syndrome; micronutrients; nutrients; obesity; steatosis.