Enticing 3D peony-like ZnGa2O4 microstructures for electrochemical detection of N, N-dimethylmethanamide chemical

J Hazard Mater. 2021 Feb 15;404(Pt A):124069. doi: 10.1016/j.jhazmat.2020.124069. Epub 2020 Sep 22.

Abstract

We demonstrate the hydrothermal synthesis of three dimension (3D) peony-like morphology of zinc gallate (ZnGa2O4), dominated by assembled nanosheets and applied as electrode material in electrochemical detection of N,N-dimethylmethanamide chemical. The crystalline, structural and compositional characterizations deduced the formation of high quality ZnGa2O4 with spinal crystal structure. Peony-like 3D ZnGa2O4 was benefited by a high surface area of ~62.3 m2 g-1, good pore distribution (mean pore diameter of ~23.3 nm) and large pore volume of ~0.3622 cm3 g-1. N,N-dimethylmethanamide chemical sensor based on peony-like 3D ZnGa2O4 electrode presented a linear curve in the working dynamic range of 1 nM-10 mM. Significantly improved chemical sensitivity of ~154.2 mA mM-1 cm-2 with low detection limit value of ~0.14 μM were achieved. The fabricated sensor based on peony-like 3D ZnGa2O4 electrode endorsed real sample analysis and ascertained the selectivity towards N,N-dimethylmethanamide chemical by analyzing a range of interfering analytes, viz. ethanol, tetrahydrofuran, methyl amine chemical.

Keywords: Electrochemical properties; Electrode; Environment protection; Nanostructures; Ternary metal oxide.

Publication types

  • Research Support, Non-U.S. Gov't