Multifunctional Random-Laser Smart Inks

ACS Appl Mater Interfaces. 2020 Oct 28;12(43):49122-49129. doi: 10.1021/acsami.0c14875. Epub 2020 Oct 15.

Abstract

With the superiority of laser-level intensity, narrow spectral line width, and broad-angular emission, random lasers (RLs) have drawn considerable research interests for their potential to carry out a variety of applications. In this work, the applications associated with optical-encoded technologies, including security printing, military friend or foe identification (FFI), and anticounterfeiting of documents are highlighted, and the concept of a transient RL "smart ink" has been proposed. The proof-of-concept was demonstrated as invisible signatures, which encoded the messages through the spectral difference of spontaneous emission and RL under specified conditions. Next, the possibility of encoding the data with multibit signals was further confirmed by exploiting the threshold tunability of RLs. Moreover, the transient characteristic of this smart ink and its capability to be attached on freeform surfaces of different materials were also shown. With the advantages of a facile manufacturing process and multiple purposes, it is expected that this ink can soon be carried out in a variety of practical utilities.

Keywords: optical encryption; photonic barcode; random laser; security printing; smart ink.