The Role of Interfacial Interactions on the Functional Properties of Ethylene-Propylene Copolymer Containing SiO2 Nanoparticles

Polymers (Basel). 2020 Oct 9;12(10):2308. doi: 10.3390/polym12102308.

Abstract

In this paper, the mechanical properties, thermal stability, and transparency of ethylene-propylene copolymer (EPC) elastomer modified with various weight percentages (1, 3, and 5 wt.%) of SiO2 nanofillers have been studied. The nanocomposites were prepared via a simple melt mixing method. The morphological results revealed that the nanofillers were uniformly dispersed in the elastomer, where a low concentration of SiO2 (1 wt.%) had been added into the elastomer. The FTIR showed that there are interfacial interactions between EPC matrix and silanol groups of SiO2 nanoparticles. Moreover, by the addition of 1 wt.% of SiO2 in the EPC, the tensile strength and elongation at break of EPC increased by about 38% and 27%, respectively. Finally, all samples were optically transparent, and the transparency of the nanocomposites reduced by increasing the content of SiO2 nanoparticles.

Keywords: elastomer; interfacial interactions; mechanical properties; nanocomposites; thermal stability.