Preparation of functional bamboo by combining nano-copper with hemicellulose and lignin under high voltage electric field (HVEF)

Carbohydr Polym. 2020 Dec 15:250:116936. doi: 10.1016/j.carbpol.2020.116936. Epub 2020 Aug 27.

Abstract

A simple and effective method for preparing functional bamboo by combining nano-copper with hemicellulose and lignin was proposed. The influences of HVEF treatment time and voltage on the reaction of nano-copper with hemicellulose and lignin were studied. The combination was characterized by scanning electron microscopy-X-ray energy dispersive spectrometer (ESEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The results indicated that the O/C ratio and OH content of the treated bamboo decreased, the number of CHO groups decreased, the number of CO groups increased, and the nano-copper interacted with the hemicellulose and lignin in the bamboo. Copper was presented in the treated bamboo in the form of Cu0, Cu+ and Cu2+. The concentration of copper increased with the increasing treatment time or voltage. The bamboo underwent the high-voltage electrostatic in situ impregnation copper treatment had significant antibacterial properties and excellent UV protection performance. Therefore, the in situ impregnation of nano-copper particles with an HVEF treatment is simple and effective to produce functionalized bamboo, and has broad application prospects.

Keywords: Bamboo; Functional; Hemicellulose; High voltage electric field; Lignin; Nano-copper particles.