First Report on the Occurrence of an Aggressive Pathotype, 734, of Plasmopara halstedii Causing Sunflower Downy Mildew in Hungary

Plant Dis. 2020 Oct 12. doi: 10.1094/PDIS-05-20-1054-PDN. Online ahead of print.

Abstract

Downy mildew of sunflower (Helianthus annuus L.) is caused by Plasmopara halstedii (Farl.) Berl. et de Toni, leading to significant losses in crop production worldwide. The number of new and more aggressive pathotypes has increased rapidly over the last 10 years in Europe (Virányi et al. 2015, Bán et al. 2018), therefore, constantly monitoring the distribution of races is an important task. As part of regular surveys in June 2019, severe downy mildew was identified in some regions, appearing as chlorotic lesions along the veins of the adaxial side and white sporulation on the abaxial side of the leaves of severely stunted hybrids containing PI6 and PI7 resistance genes. The identification of the pathogen was performed microscopically based on morphological characteristics (average size of sporangia: 28x20 µm). Disease incidence (the ratio of diseased plants) ranged between 10 and 30% per field in three regions and resulted in moderate yield loss. Isolates (defined as a lesion per leaf) were collected from 4 to 8 infected leaves of each hybrid by region and stored at -70°C. Two, one and one isolates of P. halstedii were selected and characterized from the southeastern (Békés County), northern (Nógrád County) and northeastern (Borsod-Abaúj-Zemplén County) regions of Hungary, respectively. The pathotype of the four isolates was determined using the international standardized nomenclature method reviewed by Trojanová et al. (2017), including nine sunflower differential inbred lines (HA-304, RHA-265, RHA-274, PMI-3, PM-17, 803-1, HAR-4, QHP2 and HA-335). Zoosporangia from frozen sunflower leaves were washed off into bidistilled water and the concentration was adjusted to 3.5x104 sporangia/ml using a hemocytometer. Three-day-old seedlings with a radical of 1 to 1.5 cm long were immersed in the sporangial suspension and kept at 16°C overnight (Cohen and Sackston 1973). Inoculated seedlings were planted into trays containing clear moistened perlite (d = 4 mm) and grown in a growth chamber with a photoperiod of 12 h. The experiment was carried out twice with each isolate using 15 seeds/differential line with two replicates. Bidistilled water was sprayed on the plants 9 days after inoculation, and then trays were covered with a black polyethylene bag and maintained at 19°C overnight to induce sporulation. The first disease assessment was done based on cotyledons bearing white sporulation. Next, a second evaluation was performed 21 days after inoculation assessing stunting of the plants, chlorotic lesions on true leaves and damping-off. All 4 isolates examined caused disease on differential lines HA-304, RHA-265, RHA-274, PMI-3, PM-17 and HA-335, whereas the other lines showed no symptoms and signs of sunflower downy mildew. As a result, it was concluded that the presence of P. halstedii pathotype 734 was confirmed. This pathotype is likely widespread in Hungary as it could be detected from three different regions. Moreover, the possibility that pathotype 734 is present in Hungary has been raised before (Iwebor et al. 2018). This pathotype is already widespread in the USA and Russia and is considered to be highly aggressive, since it was able to infect hybrids with resistance genes PI6 and PI7 (Iwebor et al. 2018, Spring 2019). To our knowledge, this is the first report of pathotype 734 of P. halstedii in Hungary and Central Europe. Continuous monitoring and incorporation of new resistance genes into sunflower hybrids are essential steps in the future to control P. halstedii.

Keywords: Causal Agent; Crop Type; Epidemiology; Field crops; Helianthus annuus; Oomycetes; Pathogen diversity; Subject Areas; disease development and spread; oilseeds and legumes; race identification; virulence phenotype; virulent race.