Positive feedback loop of AKR1B10P1/miR-138/SOX4 promotes cell growth in hepatocellular carcinoma cells

Am J Transl Res. 2020 Sep 15;12(9):5465-5480. eCollection 2020.

Abstract

Potential functions of pseudogenes on tumorigenesis and development of human malignancies have been gradually revealed recently. However, the specific regulation and intracellular events associated with pseudogenes have not been illustrated clearly in hepatocellular carcinoma (HCC). AKR1B10P1 is an isoform pseudogene of oncogenic AKR1B10, and is barely transcribed in normal hepatocytes. In this study, anomalous transcript of AKR1B10P1 was detected in both HCC tissues and cell lines, and is positively correlated with its parental genes. High level of AKR1B10P1 transcript is correlated with dismal clinicopathologic features, including large tumor dimension, high level of serum Alpha-fetoprotein (AFP), advanced TNM stages, tumor microsatellite formation and venous invasion. Loss-of and gain-of function assays demonstrated the exact impact of AKR1B10P1 on promoting HCC cell proliferation. Furthermore, transcription factor SOX4 was discovered facilitating the activation of AKR1B10P1 transcription, and was validated as a down-stream target degraded by tumor-suppressing miR-138. Meanwhile, we discovered the existence of a positive feedback from AKR1B10P1, by which miR-138 interacts with AKR1B10P1 via a competing endogenous RNA (ceRNA) way. Thus, we suggest a positive feedback loop of AKR1B10P1/miR-138/SOX4, promoting HCC cell proliferation. In summary, the AKR1B10P1/miR-138/SOX4 loop in HCC cells provides us potential and probable targets contributing to HCC prevention and therapeutic treatment.

Keywords: AKR1B10P1; SOX4; cell proliferation; feedback loop; miR-138.