Identification of 4-carboxyglutamate residue sites based on position based statistical feature and multiple classification

Sci Rep. 2020 Oct 9;10(1):16913. doi: 10.1038/s41598-020-73107-y.

Abstract

Glutamic acid is an alpha-amino acid used by all living beings in protein biosynthesis. One of the important glutamic acid modifications is post-translationally modified 4-carboxyglutamate. It has a significant role in blood coagulation. 4-carboxyglumates are required for the binding of calcium ions. On the contrary, this modification can also cause different diseases such as bone resorption, osteoporosis, papilloma, and plaque atherosclerosis. Considering its importance, it is necessary to predict the occurrence of glutamic acid carboxylation in amino acid stretches. As there is no computational based prediction model available to identify 4-carboxyglutamate modification, this study is, therefore, designed to predict 4-carboxyglutamate sites with a less computational cost. A machine learning model is devised with a Multilayered Perceptron (MLP) classifier using Chou's 5-step rule. It may help in learning statistical moments and based on this learning, the prediction is to be made accurately either it is 4-carboxyglutamate residue site or detected residue site having no 4-carboxyglutamate. Prediction accuracy of the proposed model is 94% using an independent set test, while obtained prediction accuracy is 99% by self-consistency tests.