Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea

Sci Total Environ. 2021 Feb 10;755(Pt 1):142542. doi: 10.1016/j.scitotenv.2020.142542. Epub 2020 Sep 28.

Abstract

Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg-1), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 μg kg-1, respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 μg g-1) for neurotoxicity in humans and lower than the Acute Reference Dose (30 μg kg-1 bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.

Keywords: Cyclic imines; Lebanon; Lipophilic toxins; Marine biota; Marine toxins; Mediterranean Sea.

MeSH terms

  • Animals
  • Biota*
  • Humans
  • Imines* / analysis
  • Kainic Acid / analogs & derivatives
  • Lebanon
  • Mediterranean Sea

Substances

  • Imines
  • domoic acid
  • Kainic Acid