Braylin induces a potent vasorelaxation, involving distinct mechanisms in superior mesenteric and iliac arteries of rats

Naunyn Schmiedebergs Arch Pharmacol. 2021 Mar;394(3):437-446. doi: 10.1007/s00210-020-01985-0. Epub 2020 Oct 9.

Abstract

Arterial hypertension is a risk factor for various cardiovascular and renal diseases, representing a major public health challenge. Although a wide range of treatment options are available for blood pressure control, many hypertensive individuals remain with uncontrolled hypertension. Thus, the search for new substances with antihypertensive potential becomes necessary. Coumarins, a group of polyphenolic compounds derived from plants, have attracted intense interest due to their diverse pharmacological properties, like potent antihypertensive activities. Braylin (6-methoxyseselin) is a coumarin identified in the Zanthoxylum tingoassuiba species, described as a phosphodiesterase-4 (PDE4) inhibitor. Although different coumarin compounds have been described as potent antihypertensive agents, the activity of braylin on the cardiovascular system has yet to be investigated. To investigate the vasorelaxation properties of braylin and its possible mechanisms of action, we performed in vitro studies using superior mesenteric arteries and the iliac arteries isolated from rats. In this study, we demonstrated, for the first time, that braylin induces potent vasorelaxation, involving distinct mechanisms from two different arteries, isolated from rats. A possible inhibition of phosphodiesterase, altering the cyclic adenosine monophosphate (cAMP)/cAMP-dependent protein kinase (PKA) pathway, may be correlated with the biological action of braylin in the mesenteric vessel, while in the iliac artery, the biological action of braylin may be correlated with increase of cyclic guanosine monophosphate (cGMP), followed by BKCa, Kir, and Kv channel activation. Together, these results provide evidence that braylin can represent a potential therapeutic use in preventing and treating cardiovascular diseases.

Keywords: Braylin; Coumarin; Hypertension; Iliac artery; Mesenteric artery; Vasodilation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Coumarins / pharmacology*
  • Iliac Artery / drug effects*
  • Iliac Artery / physiology
  • Male
  • Mesenteric Arteries / drug effects*
  • Mesenteric Arteries / physiology
  • Potassium Channels / physiology
  • Rats
  • Rats, Wistar
  • Vasodilation / drug effects
  • Vasodilator Agents / pharmacology*

Substances

  • Coumarins
  • Potassium Channels
  • Vasodilator Agents