The electronic structure of a β-diketiminate manganese hydride dimer

Dalton Trans. 2020 Oct 27;49(41):14463-14474. doi: 10.1039/d0dt02842h.

Abstract

The electronic structure of a dimeric manganese hydride catalyst supported by β-diketiminate ligands, [(2,6-iPr2PhBDI)Mn(μ-H)]2, was investigated with density functional theory. A triple bond between the manganese centres was anticipated from simple electron-counting rules; however, calculations revealed Mn-Mn Mayer bond orders of 0.21 and 0.27 for the ferromagnetically-coupled and antiferromagnetically-coupled extremes, respectively. In accordance with experimentally determined Heisenberg exchange coupling constants of -15 ± 0.1 cm-1 (SQUID) and -10.2 ± 0.7 cm-1 (EPR), the calculated J0 value of -10.9 cm-1 confirmed that the ground state involves antiferromagnetic coupling between high spin Mn(ii)-d5 centres. The effect of steric bulk on the bond order was examined via a model study with the least sterically-demanding version of the β-diketiminate ligand and was found to be negligible. Mixing between metal- and β-diketiminate-based orbitals was found to be responsible for the absence of a metal-metal multiple bond. The bridging hydrides give rise to a relatively close positioning of the metal centres, while bridging atoms possessing 2p orbitals result in longer Mn-Mn distances and more stable dimers. The synthesis and characterization of the bridging hydroxide variant, [(2,6-iPr2PhBDI)Mn(μ-OH)]2, provides experimental support for these assessments.