Highly elevated base excision repair pathway in primordial germ cells causes low base editing activity in chickens

FASEB J. 2020 Dec;34(12):15907-15921. doi: 10.1096/fj.202001065RRR. Epub 2020 Oct 8.

Abstract

Base editing technology enables the generation of precisely genome-modified animal models. In this study, we applied base editing to chicken, an important livestock animal in the fields of agriculture, nutrition, and research through primordial germ cell (PGC)-mediated germline transmission. Using this approach, we successfully produced two genome-modified chicken lines harboring mutations in the genes encoding ovotransferrin (TF) and myostatin (MSTN); however, only 55.5% and 35.7% of genome-modified chickens had the desired base substitutions in TF and MSTN, respectively. To explain the low base-editing activity, we performed molecular analysis to compare DNA repair pathways between PGCs and the chicken fibroblast cell line DF-1. The results revealed that base excision repair (BER)-related genes were significantly elevated in PGCs relative to DF-1 cells. Subsequent functional studies confirmed that the editing activity could be regulated by modulating the expression of uracil N-glycosylase (UNG), an upstream gene of the BER pathway. Collectively, our findings indicate that the distinct DNA repair property of chicken PGCs causes low editing activity during genome modification, however, modulation of BER functions could promote the production of genome-modified organisms with the desired genotypes.

Keywords: base editing; base excision repair; chicken; editing activity; primordial germ cell; uracil N-glycosylase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Animals, Genetically Modified / genetics
  • Base Sequence
  • Cell Line
  • Chickens / genetics*
  • Conalbumin / genetics
  • DNA Repair / genetics*
  • Fibroblasts / physiology
  • Gene Editing / methods
  • Genome / genetics
  • Germ Cells / physiology*
  • Myostatin / genetics
  • Signal Transduction / genetics
  • Uracil-DNA Glycosidase / genetics

Substances

  • Myostatin
  • Conalbumin
  • Uracil-DNA Glycosidase