Simulation and Experimental Study of Dynamical Recrystallization Kinetics of TB8 Titanium Alloys

Materials (Basel). 2020 Oct 5;13(19):4429. doi: 10.3390/ma13194429.

Abstract

The dynamic recrystallization (DRX) behavior in the hot working of TB8 titanium alloy was studied by using the experiment and finite element simulation (FEM) method. The results showed that the DRX behavior of TB8 titanium alloys was drastically affected by the hot processing parameters. The rising deformation temperature and reducing strain rate led to an augmentation in the grain size (dDRX) and volume fraction (XDRX) of DRX grains. In view of the true stress-strain curves gained from the experiment, the dDRX and XDRX models of DRX grains were constructed. Based on the developed models for DRX of TB8 titanium alloy, the isothermal forging process of the cylindrical samples was simulated by the DEFORM-3D software. The distributions of the effective strain and XDRX for DRX were analyzed. A comparison of the dDRX and XDRX of DRX grains in the central regions of the samples between the experimental and FEM results was performed. A good correlation between the experimental and simulation results was obtained, indicating that the established FEM model presented good prediction capabilities.

Keywords: DRX behavior; FEM; TB8 titanium alloy; hot compression.