Comparative Measurements of Local Seismic Rotations by Three Independent Methods

Sensors (Basel). 2020 Oct 5;20(19):5679. doi: 10.3390/s20195679.

Abstract

A comparative active experiment that is aimed at collocated measurement of seismic rotation rates along three orthogonal axes by means of three different methods is described. The rotation rates in a short-period range of 6-20 Hz were obtained using three different methods: the 6C Rotaphone sensor system developed by the authors, the commercial R-1 rotational sensor by Eentec, and a small-aperture array of twelve standard velocigraphs in a rectangular arrangement. Those three methods are compared and discussed in detail. A medium-size quarry blast was used as a seismic source. At a distance of approximately 240 m, the rotation rates reached an amplitude of the order of magnitude of 10-4-10-5 rad/s. The array derived rotation rates displayed serious limitations, as clearly documented. The R-1 instruments have shown certain technical problems that partly limit their applicability. The measured rotation rates were compared to the relevant acceleration components according to rotation-to-translation relations. Out of all the three methods, the records best matching the acceleration components were made by Rotaphone. The experiment also revealed that rotation rates in the given short-period range noticeably changed over a distance as short as 2 m.

Keywords: Rotaphone; rotational seismometer; seismic array; seismic rotation.