Nutrient control in water bodies: A systems approach

J Environ Qual. 2020 May;49(3):517-533. doi: 10.1002/jeq2.20022. Epub 2020 Mar 23.

Abstract

Nutrient pollution is considered a wicked problem because of its many significant economic, social, and environmental impacts that are caused by multiple pollutants originating from a variety of sources and pathways that exist across different temporal and spatial scales. Further adding to the difficulty in managing nutrient pollution is that it is a global, rural, and urban problem. A systems approach can improve nutrient management by incorporating technological, environmental, and societal considerations. This approach can consider valuation of monetized and nonmonetized co-benefits and the inherent consequences that make up a nutrient management program. In this introduction to a special collection of papers on nutrient pollution, we describe several systems frameworks that can be used to support nutrient management and evaluation of system performance as it relates to impacts, then highlight several attributes and barriers of nutrient management that point to the need for a systems framework, and conclude with thoughts on implementing systems approaches to nutrient management with effective community engagement and use of new technologies. This special collection presents results from a USEPA Science to Achieve Results (STAR) initiative to advance solutions to nutrient pollution through innovative and sustainable research and demonstration projects for nutrient management based on a systems approach. These studies evaluate several promising nutrient control technologies for stormwater or domestic wastewater, investigate the effects of agricultural conservation practices and stream restoration strategies on nutrient loads, and discuss several challenges and opportunities-social, policy, institutional, and financial considerations-that can accelerate adoption of reliable technologies to achieve system-level outcomes.

MeSH terms

  • Agriculture
  • Nutrients*
  • Rivers*
  • Systems Analysis
  • Wastewater

Substances

  • Waste Water