Preferential modification of CyaA-hemolysin by CyaC-acyltransferase through the catalytic Ser30-His33 dyad in esterolysis of palmitoyl-donor substrate devoid of acyl carrier proteins

Arch Biochem Biophys. 2020 Nov 15:694:108615. doi: 10.1016/j.abb.2020.108615. Epub 2020 Oct 2.

Abstract

We previously demonstrated that the ~130-kDa CyaA-hemolysin domain (CyaA-Hly) from Bordetella pertussis co-expressed with CyaC-acyltransferase in Escherichia coli was acylated at Lys983 and thus activated its hemolytic activity. Here, attempts were made to provide greater insights into such toxin activation via fatty-acyl modification by CyaC-acyltransferase. Non-acylated CyaA-Hly (NA/CyaA-Hly) and CyaC were separately expressed in E. coli and subsequently purified by FPLC to near homogeneity. When effects of acyl-chain length were comparatively evaluated through CyaC-esterolysis using various p-nitrophenyl (pNP) derivatives, Michaelis-Menten steady-state kinetic parameters (KM and kcat) of CyaC-acyltransferase revealed a marked preference for myristoyl (C14:0) and palmitoyl (C16:0) substrates of which catalytic efficiencies (kcat/KM) were roughly the same (~1.5 × 103 s-1mM-1). However, pNP-palmitate (pNPP) gave the highest hemolytic activity of NA/CyaA-Hly after being acylated in vitro with a range of acyl-donor substrates. LC-MS/MS analysis confirmed such CyaC-mediated palmitoylation of CyaA-Hly occurring at Lys983, denoting no requirement of an acyl carrier protein (ACP). A homology-based CyaC structure inferred a role of a potential catalytic dyad of conserved Ser30 and His33 residues in substrate esterolysis. CyaC-ligand binding analysis via molecular docking corroborated high-affinity binding of palmitate with its carboxyl group oriented toward such a dyad. Ala-substitutions of each residue (S30A or H33A) caused a drastic decrease in kcat/KM of CyaC toward pNPP, and hence its catalytic malfunction through palmitoylation-dependent activation of NA/CyaA-Hly. Altogether, our present data evidently provide such preferential palmitoylation of CyaA-Hly by CyaC-acyltransferase through the enzyme Ser30-His33 nucleophile-activation dyad in esterolysis of palmitoyl-donor substrate, particularly devoid of a natural acyl-ACP donor.

Keywords: A nucleophile activation dyad; CyaC-acyltransferase; Esterolysis; Palmitoylation; Toxin activation; p-Nitrophenyl derivatives.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acyltransferases / chemistry*
  • Acyltransferases / genetics
  • Acyltransferases / metabolism
  • Adenylate Cyclase Toxin / chemistry*
  • Adenylate Cyclase Toxin / metabolism
  • Amino Acid Sequence
  • Bordetella pertussis / enzymology
  • Catalysis
  • Histidine / chemistry*
  • Kinetics
  • Lipoylation
  • Molecular Docking Simulation
  • Mutagenesis, Site-Directed
  • Mutation
  • Palmitates / chemistry*
  • Palmitates / metabolism
  • Protein Binding
  • Sequence Alignment
  • Serine / chemistry*
  • Substrate Specificity

Substances

  • Adenylate Cyclase Toxin
  • Palmitates
  • 4-nitrophenyl palmitate
  • Serine
  • Histidine
  • Acyltransferases