Universal correlations between the fragility and interparticle repulsion of glass-forming liquids

J Chem Phys. 2020 Sep 28;153(12):124507. doi: 10.1063/5.0014457.

Abstract

A recently published analytical model describing and predicting elasticity, viscosity, and fragility of metallic melts is applied for the analysis of about 30 nonmetallic glassy systems, ranging from oxide network glasses to alcohols, low-molecular-weight liquids, polymers, plastic crystals, and even ionic glass formers. The model is based on the power-law exponent λ representing the steepness parameter of the repulsive part of the inter-atomic or inter-molecular potential and the thermal-expansion parameter αT determined by the attractive anharmonic part of the effective interaction. It allows fitting the typical super-Arrhenius temperature variation of the viscosity or dielectric relaxation time for various classes of glass-forming matter, over many decades. We discuss the relation of the model parameters found for all these different glass-forming systems to the fragility parameter m and detect a correlation of λ and m for the non-metallic glass formers, in accord with the model predictions. Within the framework of this model, the fragility of glass formers can be traced back to microscopic model parameters characterizing the intermolecular interactions.