Effects of the Different Solid Deposits on the Corrosion Behavior of Pure Fe in Water Vapor at 500°C

Scanning. 2020 Sep 11:2020:6280725. doi: 10.1155/2020/6280725. eCollection 2020.

Abstract

A comprehensive corrosion investigation of pure Fe in an environment of solid sodium salt deposit (i.e., NaCl or Na2SO4) with mixtures of H2O and O2 at 500°C was conducted by mass gain measurement, X-ray diffraction (XRD), scanning electron microscope (SEM), potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rates were accelerated with solid NaCl or Na2SO4 deposit due to their reaction with the formed protective scale of Fe2O3 and subsequently resulted in its breakdown. The corrosion rate of pure Fe with solid NaCl is higher than that with solid Na2SO4 because of the lower activation energy (E a) for chemical reaction of Fe in solid NaCl+H2O+O2 (i.e., 140.5 kJ/mol) than that in solid Na2SO4+H2O+O2 (i.e., 200.9 kJ/mol). Notably, the electrochemical corrosion rate of pure Fe with solid NaCl deposit, 1.16 × 10-4 A/cm2, was a little lower than that with solid Na2SO4 deposit.