Influence of non-equilibrium electron dynamics on photoluminescence of metallic nanostructures

Nanotechnology. 2020 Dec 4;31(49):495204. doi: 10.1088/1361-6528/abb1ee.

Abstract

A microscopic model is still strongly needed to understand the intrinsic photoluminescence (iPL) of metallic nanostructures. In this paper, a phenomenological model concerning the electron dynamics at the excited states, including the electron-phonon (e-p) and electron-electron (e-e) interactions, is developed. This model shows that the dynamics of non-equilibrium electrons at the excited states influence the iPL features significantly. Two main aspects determine the iPL process of metallic nanostructures: the photonic density of states relating to the Purcell effect caused by the surface plasmon resonances, and the electrons transition factor. This model takes into account the contribution of the e-p and e-e interactions to the dynamic electron distribution. The decay process of the non-thermal electrons at the excited states helps understanding most of the iPL features of metallic nanostructures. The calculated and experimental results coincide well regarding the spectral shape, temperature-dependent anti-Stokes emission, and nonlinear behaviors, and time-resolved spectra. The results presented in this paper provide a concise, intuitive, and comprehensive understanding of the iPL of metallic nanostructures.